Publications by authors named "S J Elledge"

The amino acid sequence of the T cell receptor (TCR) varies between T cells of an individual's immune system. Particular TCR residues nearly guarantee mucosal-associated invariant T (MAIT) and natural killer T (NKT) cell transcriptional fates. To define how the TCR sequence affects T cell fates, we analyze the paired αβTCR sequence and transcriptome of 961,531 single cells.

View Article and Find Full Text PDF

Many promising targets for adoptive T cell therapy (ACT) are self-antigens, but self-reactive T cells are generally eliminated during thymic selection or diverted to regulatory phenotypes. To bypass T cell tolerance and obtain potent and safe T cell therapeutics, we developed T-Switch, an in vitro T cell receptor (TCR) engineering platform for the creation, modification, and comprehensive profiling of TCRs that can target self-antigens. T-Switch first expands T cells that recognize a "foreign" peptide closely related to a self-antigen.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on how E3 ligases interact with substrates through specific C-degron sequences, which are essential for the ubiquitin-proteasome system’s function in protein degradation.* -
  • Researchers compared ubiquitylation activities of various substrates and used techniques like biochemistry and crystallography to uncover how different E3 ligases from the KLHDCX family recognize C-degrons.* -
  • Findings indicate that while a common anchoring motif aids in binding, variations in structure and additional interactions influence which substrates can be recognized and degraded, highlighting the complexity of substrate specificity.*
View Article and Find Full Text PDF

PROTAC® (proteolysis-targeting chimera) molecules induce proximity between an E3 ligase and protein-of-interest (POI) to target the POI for ubiquitin-mediated degradation. Cooperative E3-PROTAC-POI complexes have potential to achieve neo-substrate selectivity beyond that established by POI binding to the ligand alone. Here, we extend the collection of ubiquitin ligases employable for cooperative ternary complex formation to include the C-degron E3 KLHDC2.

View Article and Find Full Text PDF