The main cause of malignancy-related mortality is metastasis. Although metastatic progression is driven by diverse tumor-intrinsic mechanisms, there is a growing appreciation for the contribution of tumor-extrinsic elements of the tumor microenvironment, especially macrophages, which correlate with poor clinical outcomes. Macrophages consist of bone marrow-derived and tissue-resident populations.
View Article and Find Full Text PDFWhile immune checkpoint inhibitors (ICIs) have transformed the therapeutic landscape in oncology, they are effective in select subsets of patients. Efficacy may be limited by tumor-driven immune suppression, of which 1 key mechanism is the development of myeloid-derived suppressor cells (MDSCs). A fundamental gap in MDSC therapeutics is the lack of approaches that target MDSC biogenesis.
View Article and Find Full Text PDFBackground: Immune suppression is common in neoplasia and a major driver is tumor-induced myeloid dysfunction. Yet, overcoming such myeloid cell defects remains an untapped strategy to reverse suppression and improve host defense. Exposure of bone marrow progenitors to heightened levels of myeloid growth factors in cancer or following certain systemic treatments promote abnormal myelopoiesis characterized by the production of myeloid-derived suppressor cells (MDSCs) and a deficiency in antigen-presenting cell function.
View Article and Find Full Text PDFPatients with metastatic breast cancer (MBC) have limited therapeutic options and novel treatments are critically needed. Prior research implicates tumor-induced mobilization of myeloid cell populations in metastatic progression, as well as being an unfavorable outcome in MBC; however, the underlying mechanisms for these relationships remain unknown. Here, we provide evidence for a novel mechanism by which p38 promotes metastasis.
View Article and Find Full Text PDFThe adaptive immune system is essential for host defense against pathogenic challenges, and a major constituent is the CD8 cytotoxic T cell. Ordinarily, CD8 T cells are endowed with a unique ability to specifically recognize and destroy their targets. However, in cases where disease emerges, especially in cancer, the efficacy of the CD8 T cell response is frequently counterbalanced in a 'tug-of-war' by networks of tumor-driven mechanisms of immune suppression.
View Article and Find Full Text PDF