Introduction: A greater choice of menstrual products may improve menstrual health (MH). This study assessed factors associated with declining consent to receive a menstrual cup by parents and female students participating in a MH intervention trial in Ugandan schools.
Methods: We analysed baseline data from a cluster-randomised trial evaluating the effectiveness of a multicomponent MH intervention among female students in 60 Ugandan secondary schools.
Adverse outcome pathways (AOPs) were introduced in modern toxicology to provide evidence-based representations of the events and processes involved in the progression of toxicological effects across varying levels of the biological organisation to better facilitate the safety assessment of chemicals. AOPs offer an opportunity to address knowledge gaps and help to identify novel therapeutic targets. They also aid in the selection and development of existing and new in vitro and in silico test methods for hazard identification and risk assessment of chemical compounds.
View Article and Find Full Text PDFQuantitative structure-activity relationship (QSAR) models are powerful in silico tools for predicting the mutagenicity of unstable compounds, impurities and metabolites that are difficult to examine using the Ames test. Ideally, Ames/QSAR models for regulatory use should demonstrate high sensitivity, low false-negative rate and wide coverage of chemical space. To promote superior model development, the Division of Genetics and Mutagenesis, National Institute of Health Sciences, Japan (DGM/NIHS), conducted the Second Ames/QSAR International Challenge Project (2020-2022) as a successor to the First Project (2014-2017), with 21 teams from 11 countries participating.
View Article and Find Full Text PDFRecent years have seen a substantial growth in the adoption of machine learning approaches for the purposes of quantitative structure-activity relationship (QSAR) development. Such a trend has coincided with desire to see a shifting in the focus of methodology employed within chemical safety assessment: away from traditional reliance upon animal-intensive in vivo protocols, and towards increased application of in silico (or computational) predictive toxicology. With QSAR central amongst techniques applied in this area, the emergence of algorithms trained through machine learning with the objective of toxicity estimation has, quite naturally, arisen.
View Article and Find Full Text PDFIn silico predictive models for toxicology include quantitative structure-activity relationship (QSAR) and physiologically based kinetic (PBK) approaches to predict physico-chemical and ADME properties, toxicological effects and internal exposure. Such models are used to fill data gaps as part of chemical risk assessment. There is a growing need to ensure in silico predictive models for toxicology are available for use and that they are reproducible.
View Article and Find Full Text PDF