Coarse-grained models of DNA have made important contributions to the determination of the physical properties of genomic DNA, working as a molecular machine for gene regulation. In this study, to analyze the global dynamics of long DNA sequences with consideration of sequence-dependent geometry, we propose elastic network models of DNA where each particle represents nucleotides (1-particle-per-k-nucleotides, 1PkN). The models were adjusted according to profiles of the anisotropic fluctuations obtained from our previous 1-particle-per-1-nucleotide (1P1N) model, which was proven to reproduce such profiles of all-atom models.
View Article and Find Full Text PDFSimple elastic network models of DNA were developed to reveal the structure-dynamics relationships for several nucleotide sequences. First, we propose a simple all-atom elastic network model of DNA that can explain the profiles of temperature factors for several crystal structures of DNA. Second, we propose a coarse-grained elastic network model of DNA, where each nucleotide is described only by one node.
View Article and Find Full Text PDFUnlabelled: Aims/Introduction: Several experimental studies have shown that ezetimibe improves steatosis and insulin resistance in the liver. This suggests that ezetimibe may improve glucose metabolism, as well as lipid metabolism, by inhibiting hepatic lipid accumulation. Therefore, we compared HbA1c levels after 3 months ezetimibe treatment with baseline levels in patients with type 2 diabetes and examined the factors associated with reductions in HbA1c following ezetimibe administration.
View Article and Find Full Text PDFAim: The aim of this study was to evaluate the efficacy of two group-based lifestyle interventions in ameliorating the risk factors of metabolic syndrome (MS) and insulin resistance.
Methods: Ninety-eight subjects who had at least one component of MS were randomized into standard intervention (SI) (4-month intervention; n = 50) and extended intervention (EI) (10-month intervention; n = 48) groups, and 39 subjects were followed up for a control group. The effects of intervention were evaluated after 10, 22 and 34 months.
5-(1,3,4-Oxadiazol-2-yl)pyrimidine derivative 1 was identified as a new class of FLT3 inhibitor from our compound library. With the aim of enhancement of antitumor activity of 2 prepared by minor modification of 1, structure optimization of side chains at the 2-, 4-, and 5-positions of the pyrimidine ring of 2 was performed to improve the metabolic stability. Introduction of polar substituents on the 1,3,4-oxadiazolyl group contributed to a significant increase in the metabolic stability.
View Article and Find Full Text PDF