Western dietary pattern is one of the main contributors to the increased risk of obesity and chronic diseases, through oxidative stress and inflammation, that are the two key mechanisms targeting metabolic organs, such as skeletal muscle and adipose tissue. The chronic exposure to high levels of dietary fatty acids can increase the amount of intramyocellular lipids in skeletal muscle, altering glucose homeostasis and contributing to a reduction in mitochondrial oxidative capacity. Probiotic administration is a promising approach as preventive strategy to attenuate metabolic damage induced by Western diet.
View Article and Find Full Text PDFThe oral administration of probiotics is nowadays recognized as a strategy to treat or prevent the consequences of unhealthy dietary habits. Here we analyze and compare the effects of the oral administration of vegetative cells or spores of Shouchella clausii SF174 in counteracting gut dysfunctions induced by 6 weeks of high fructose intake in a rat model. Gut microbiota composition, tight junction proteins, markers of inflammation and redox homeostasis were evaluated in ileum and colon in rats fed fructose rich diet and supplemented with cells or spores of Shouchella clausii SF174.
View Article and Find Full Text PDFBiofactors
December 2024
The consumption of western diets, high in fats and sugars, is a crucial contributor to brain molecular alterations, cognitive dysfunction and neurodegenerative diseases. Therefore, a mandatory challenge is the individuation of strategies capable of preventing diet-induced impairment of brain physiology. A promising strategy might consist in the administration of probiotics that are known to influence brain function via the gut-brain axis.
View Article and Find Full Text PDFIntroduction: Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance.
Methods: Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated DSM 17938 (WRM).
Dietary high fructose (HFrD) is known as a metabolic disruptor contributing to the development of obesity, diabetes, and dyslipidemia. Children are more sensitive to sugar than adults due to the distinct metabolic profile, therefore it is especially relevant to study the metabolic alterations induced by HFrD and the mechanisms underlying such changes in animal models of different ages. Emerging research suggests the fundamental role of epigenetic factors such as microRNAs (miRNAs) in metabolic tissue injury.
View Article and Find Full Text PDF