Inorganic scintillators are widely used for fast timing applications in high-energy physics (HEP) experiments, time-of-flight positron emission tomography and time tagging of soft and hard x-ray photons at advanced light sources. As the best coincidence time resolution (CTR) achievable is proportional to the square root of the scintillation decay time it is worth studying fast cross-luminescence, for example in BaFwhich has an intrinsic yield of about 1400 photons/MeV. However, emission bands in BaFare located in the deep-UV at 195 nm and 220 nm, which sets severe constraints on photodetector selection.
View Article and Find Full Text PDFHeat treatment is needed to increase the luminescence intensity of ZnO:Ga particles, but it comes at the cost of higher particle agglomeration. Higher agglomeration results in low transparency of scintillating powder when embedded in a matrix and constitutes one of the biggest disadvantages, besides low light yield and low stopping power, of ZnO:Ga powder. Limiting ZnO:Ga particle size is therefore a key step in order to prepare highly luminescent and transparent composites with prospects for optical applications.
View Article and Find Full Text PDFAction recognition is a challenging task that plays an important role in many robotic systems, which highly depend on visual input feeds. However, due to privacy concerns, it is important to find a method which can recognise actions without using visual feed. In this paper, we propose a concept for detecting actions while preserving the test subject's privacy.
View Article and Find Full Text PDFPhoto-induced synthesis was used for preparation of powder Zn(Cd,Mg)O:Ga scintillating nanocrystals featuring properties of solid solutions. Only ZnO phase was identified without any phase separation up to 10% of Cd after optimization of the preparation. Radioluminescence spectra show the exciton-related emission in UV spectral range with significant blue (ZnMgO:Ga) or red (ZnCdO:Ga) shifts.
View Article and Find Full Text PDFThis paper presents the results of the study of electronic excitations in undoped LiBaAlF(6) single crystals by means of luminescence spectroscopy and complimentary optical methods. The intrinsic emission at 4.2 eV due to self-trapped excitons was identified.
View Article and Find Full Text PDF