Publications by authors named "S I Miyatake"

Interferon regulatory factor 2 binding protein-like (IRF2BPL) is a single-exon gene that is ubiquitously expressed in various tissues, including the brain. IRF2BPL encodes a transcription factor with two zinc-finger domains that potentially downregulate WNT signaling in the nervous system. Pathogenic IRF2BPL variants have been reported to cause developmental delay, seizures, myoclonus epilepsies, autistic spectrum disorder, and other neurodevelopmental disorders.

View Article and Find Full Text PDF

Mitochondria contribute to cellular metabolism by providing a specialised milieu for energising cells by incorporating and processing the metabolites. However, heterogeneity in the mitochondria within is only partially elucidated. Mitochondria dynamically alter their morphology and functions during the life of animals, in which cells proliferate and grow.

View Article and Find Full Text PDF

In monogenic diseases, double mosaic variants of the same gene have rarely been identified. Here, we report the case of triple mosaic variants in PURA, a gene responsible for a neurodevelopmental syndrome (OMIM# 616158). Whole-exome sequencing identified three somatic PURA variants in our case with a similar neurodevelopmental syndrome: NM_005859.

View Article and Find Full Text PDF

Background: Heterozygous variants of sequestosome-1 gene (SQSTM1) have been reported in patients with various neurological disorders, whereas biallelic pathogenic variants of SQSTM1 can cause child-onset and multisystem neurodegeneration, including cerebellar ataxia, dystonia, and vertical gaze palsy (NADGP). Here, we describe two cases of NADGP in a Japanese family.

Methods: We performed clinical and genetic laboratory evaluations of the two patients and their healthy parents.

View Article and Find Full Text PDF

Transcription factor GATA3 is essential for the developmental processes of T cells. Recently, the silencer of a cytokine IFNγ gene was identified, the inhibitory activity of which requires GATA3. GATA3 has 2 Zn fingers and the commonly used GATA3 deficient mice lack both fingers (D2).

View Article and Find Full Text PDF