Nucleic Acids Res
January 2025
Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread.
View Article and Find Full Text PDFThermus thermophilus bacteriophage P23-45 encodes a giant 5,002-residue tail tape measure protein (TMP) that defines the length of its extraordinarily long tail. Here, we show that the N-terminal portion of P23-45 TMP is an unusual RNA polymerase (RNAP) homologous to cellular RNAPs. The TMP-fused virion RNAP transcribes pre-early phage genes, including a gene that encodes another, non-virion RNAP, that transcribes early and some middle phage genes.
View Article and Find Full Text PDFAntibiotic streptolydigin (Stl) inhibits bacterial transcription by blocking the trigger loop folding in the active center of RNA polymerase (RNAP), which is essential for catalysis. We use acoustic force spectroscopy to characterize the dynamics of transcription elongation in ternary elongation complexes of RNAP (ECs) in the presence of Stl at a single-molecule level. We found that Stl induces long-lived stochastic pauses while the instantaneous velocity of transcription between the pauses is unaffected.
View Article and Find Full Text PDFBacterial topoisomerase I (TopoI) removes excessive negative supercoiling and is thought to relax DNA molecules during transcription, replication and other processes. Using ChIP-Seq, we show that TopoI of Escherichia coli (EcTopoI) is colocalized, genome-wide, with transcribing RNA polymerase (RNAP). Treatment with transcription elongation inhibitor rifampicin leads to EcTopoI relocation to promoter regions, where RNAP also accumulates.
View Article and Find Full Text PDF