Publications by authors named "S Hus"

Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance).

View Article and Find Full Text PDF
Article Synopsis
  • Most 2D materials studied are hexagonal, but researchers have successfully created a metastable pentagonal 2D material called monolayer pentagonal PdTe.
  • This material was synthesized using symmetry-driven epitaxy and characterized through scanning tunneling microscopy and spectroscopy, showing stable low-symmetry atomic structures.
  • Theoretical analyses suggest that monolayer pentagonal PdTe is a semiconductor with a 1.05 eV indirect bandgap, paving the way for future pentagon-based 2D materials and their potential applications in nanoelectronics.
View Article and Find Full Text PDF

We report an algorithm to identify and correct distorted wavefronts in atomic resolution scanning tunneling microscope images. This algorithm can be used to correct nonlinear in-plane distortions without prior knowledge of the physical scanning parameters, the characteristics of the piezoelectric actuator, or individual atom positions. The 2D image is first defined as a sum of sinusoidal plane waves, where a nonlinear distortion renders a curve for an otherwise ideal linear wavefront.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how defects in two-dimensional materials, specifically single-layer WS, can enhance properties like photoluminescence (PL) and enable applications like single-photon emission by using nitrogen plasma exposure.
  • - Researchers discovered a unique low-energy PL peak at 1.59 eV, influenced by the nitrogen substitution for sulfur, which varies with sulfur deficiency levels, peaking at a 2.0% deficiency and disappearing at higher levels.
  • - First-principles calculations support the findings, indicating the potential of the nitrogen defects in WS as isolated artificial atoms for single-photon emitters, while also providing a method to track nitrogen doping concentration through PL intensity.
View Article and Find Full Text PDF

Non-volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few-layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX , M = transitional metal, e.

View Article and Find Full Text PDF