Atomically thin 2D materials present the potential for advancing membrane separations via a combination of high selectivity (from molecular sieving) and high permeance (due to atomic thinness). However, the creation of a high density of precise nanopores (narrow-size-distribution) over large areas in 2D materials remains challenging, and nonselective leakage from nanopore heterogeneity adversely impacts performance. Here, we demonstrate protein-enabled size-selective defect sealing (PDS) for atomically thin graphene membranes over centimeter scale areas by leveraging the size and reactivity of permeating proteins to preferentially seal larger nanopores (≥4 nm) while preserving a significant amount of smaller nanopores (via steric hindrance).
View Article and Find Full Text PDFWe report an algorithm to identify and correct distorted wavefronts in atomic resolution scanning tunneling microscope images. This algorithm can be used to correct nonlinear in-plane distortions without prior knowledge of the physical scanning parameters, the characteristics of the piezoelectric actuator, or individual atom positions. The 2D image is first defined as a sum of sinusoidal plane waves, where a nonlinear distortion renders a curve for an otherwise ideal linear wavefront.
View Article and Find Full Text PDFNon-volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few-layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX , M = transitional metal, e.
View Article and Find Full Text PDF