Abnormal accumulation of tau proteins is one pathological hallmark of Alzheimer□s disease (AD). Many tau protein post-translational modifications (PTMs) are associated with the development of AD, such as phosphorylation, acetylation, and methylation. Therefore, a complete picture of PTM landscape of tau is critical for understanding the molecular mechanisms of AD progression.
View Article and Find Full Text PDFRecent evidence suggests that iron-sulfur clusters (ISCs) in DNA replicative proteins sense DNA-mediated charge transfer to modulate nuclear DNA replication. In the mitochondrial DNA replisome, only the replicative DNA helicase (mtDNA helicase) from has been shown to contain an ISC in its N-terminal, primase-like domain (NTD). In this report, we confirm the presence of the ISC and demonstrate the importance of a metal cofactor in the structural stability of the mtDNA helicase.
View Article and Find Full Text PDFThe microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis.
View Article and Find Full Text PDFThe neurodegenerative Alzheimer's disease (AD) affects more than 30 million people worldwide. There is thus far no cure or prevention for AD. Aggregation of hyperphosphorylated tau in the brain correlates with the cognitive decline of patients of AD and other neurodegenerative tauopathies.
View Article and Find Full Text PDF