Publications by authors named "S Holzberger"

We address the challenge of increasing the bandwidth of high-finesse femtosecond enhancement cavities and demonstrate a broad spectrum spanning 1800  cm (195 nm) at -10  dB around a central wavelength of 1050 nm in an EC with an average finesse exceeding 300. This will benefit a host of spectroscopic applications, including transient absorption spectroscopy, direct frequency comb spectroscopy, and Raman spectroscopy. The pulse circulating in the EC is composed of only 5.

View Article and Find Full Text PDF

State-of-the-art optical switches for coupling pulses into and/or out of resonators are based on either the electro-optic or the acousto-optic effect in transmissive elements. In high-power applications, the damage threshold and other nonlinear and thermal effects in these elements impede further improvements in pulse energy, duration, and average power. We propose a new optomechanical switching concept which is based solely on reflective elements and is suitable for switching times down to the ten-nanosecond range.

View Article and Find Full Text PDF

We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to ~30 fs with chirped mirrors.

View Article and Find Full Text PDF

Periodic dumping of ultrashort laser pulses from a passive multi-MHz repetition-rate enhancement cavity is a promising route towards multi-kHz repetition-rate pulses with Joule-level energies at an unparalleled average power. Here, we demonstrate this so-called stack-and-dump scheme with a 30-m-long cavity. Using an acousto-optic modulator, we extract pulses of 0.

View Article and Find Full Text PDF

The optimal enhancement of broadband optical pulses in a passive resonator requires a seeding pulse train with a specific carrier-envelope-offset frequency. Here, we control the phase of the cavity mirrors to tune the offset frequency for which a given comb is optimally enhanced. This enables the enhancement of a zero-offset-frequency train of sub-30-fs pulses to multi-kW average powers.

View Article and Find Full Text PDF