Obligate parasites often trigger significant changes in their hosts to facilitate transmission to new hosts. The molecular mechanisms behind these extended phenotypes - where genetic information of one organism is manifested as traits in another - remain largely unclear. This study explores the role of the virulence protein SAP54, produced by parasitic phytoplasmas, in attracting leafhopper vectors.
View Article and Find Full Text PDFTwo invasive hemipteran adelgids cause widespread damage to North American conifers. (the hemlock woolly adelgid) has decimated and (the Eastern and Carolina hemlocks, respectively). was introduced from East Asia and reproduces parthenogenetically in North America, where it can kill trees rapidly.
View Article and Find Full Text PDFTargeted protein degradation (TPD) has emerged as a highly promising approach for eliminating disease-associated proteins in the field of drug discovery. Among the most advanced TPD technologies, PROteolysis TArgeting Chimera (PROTAC), functions by bringing a protein of interest (POI) into proximity with an E3 ubiquitin ligase, leading to ubiquitin (Ub)-dependent proteasomal degradation. However, the designs of most PROTACs are based on the utilization of a limited number of available E3 ligases, which significantly restricts their potential.
View Article and Find Full Text PDFBackground: Female sexual dysfunction is common in the general population, with age emerging as a significant determinant of sexual activity and functioning.
Aim: To establish age-specific reference scores for the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) in the general Dutch female population.
Methods: A retrospective, cross-sectional, questionnaire-based study was conducted in the Netherlands.
In eukaryotes, targeted protein degradation (TPD) typically depends on a series of interactions among ubiquitin ligases that transfer ubiquitin molecules to substrates leading to degradation by the 26S proteasome. We previously identified that the bacterial effector protein SAP05 mediates ubiquitin-independent TPD. SAP05 forms a ternary complex via interactions with the von Willebrand Factor Type A (vWA) domain of the proteasomal ubiquitin receptor Rpn10 and the zinc-finger (ZnF) domains of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) and GATA BINDING FACTOR (GATA) transcription factors (TFs).
View Article and Find Full Text PDF