The counter-electrode (CE) material in electrochemical metallization memory (ECM) cells plays a crucial role in the switching process by affecting the reactions at the CE/electrolyte interface. This is due to the different electrocatalytic activity of the CE material towards reduction-oxidation reactions, which determines the metal ion concentration in the electrolyte and ultimately impacts the switching kinetics. In this study, the focus is laid on Pt, TiN, and W, which are relevant in standard chip technology.
View Article and Find Full Text PDFMetal-free chemical vapor deposition (CVD) of single-layer graphene (SLG) on c-plane sapphire has recently been demonstrated for wafer diameters of up to 300 mm, and the high quality of the SLG layers is generally characterized by integral methods. By applying a comprehensive analysis approach, distinct interactions at the graphene-sapphire interface and local variations caused by the substrate topography are revealed. Regions near the sapphire step edges show tiny wrinkles with a height of about 0.
View Article and Find Full Text PDFWith the arrival of the Internet of Things (IoT) and the challenges arising from Big Data, neuromorphic chip concepts are seen as key solutions for coping with the massive amount of unstructured data streams by moving the computation closer to the sensors, the so-called "edge computing." Augmenting these chips with emerging memory technologies enables these edge devices with non-volatile and adaptive properties which are desirable for low power and online learning operations. However, an energy- and area-efficient realization of these systems requires disruptive hardware changes.
View Article and Find Full Text PDFFunctional thin films are commonly integrated in electronic devices as part of a multi-layer architecture. Metal/oxide/metal structures e.g.
View Article and Find Full Text PDFRedox-type resistive random access memories based on transition-metal oxides are studied as adjustable two-terminal devices for integrated network applications beyond von Neumann computing. The prevailing, so-called, counter-eight-wise (c8w) polarity of the switching hysteresis in filamentary-type valence change mechanism devices originates from a temperature- and field-controlled drift-diffusion process of mobile ions, predominantly oxygen vacancies in the switching oxide. Recently, a bipolar resistive switching (BRS) process with opposite polarity, so-called, eight-wise (8w) switching, has been reported that, especially for TiO cells, is still not completely understood.
View Article and Find Full Text PDF