Microbial U(VI) reduction plays a major role in new bioremediation strategies for radionuclide-contaminated environments and can potentially affect the safe disposal of high-level radioactive waste in a deep geological repository. Desulfitobacterium sp. G1-2, isolated from a bentonite sample, was used to investigate its potential to reduce U(VI) in different background electrolytes: bicarbonate buffer, where a uranyl(VI)‑carbonate complex predominates, and synthetic Opalinus Clay pore water, where a uranyl(VI)-lactate complex occurs, as confirmed by time-resolved laser-induced fluorescence spectroscopic measurements.
View Article and Find Full Text PDFMicro- and nanoplastics are emerging pollutants with a concerning persistence in the environment. Research into their environmental impact requires addressing challenges related to sensitively and selectively detecting them in complex ecological media. One solution with great potential for alleviating these issues is using radiolabeling strategies.
View Article and Find Full Text PDFMicroorganisms show a high affinity for trivalent actinides and lanthanides, which play an important role in the safe disposal of high-level radioactive waste as well as in the mining of various rare earth elements. The interaction of the lanthanide Eu(III) with the sulfate-reducing microorganism Desulfosporosinus hippei DSM 8344, a representative of the genus Desulfosporosinus that naturally occurs in clay rock and bentonite, was investigated. Eu(III) is often used as a non-radioactive analogue for the trivalent actinides Pu(III), Am(III), and Cm(III), which contribute to a major part of the radiotoxicity of the nuclear waste.
View Article and Find Full Text PDFMicrobial U(VI) reduction influences uranium mobility in contaminated subsurface environments and can affect the disposal of high-level radioactive waste by transforming the water-soluble U(VI) to less mobile U(IV). The reduction of U(VI) by the sulfate-reducing bacterium Desulfosporosinus hippei DSM 8344, a close phylogenetic relative to naturally occurring microorganism present in clay rock and bentonite, was investigated. D.
View Article and Find Full Text PDFThe safe disposal of high-level radioactive waste in a deep geological repository is a huge social and technical challenge. So far, one of the less considered factors needed for a long-term risk assessment, is the impact of microorganisms occurring in the different host rocks. Even under the harsh conditions of salt formations different bacterial and archaeal species were found, e.
View Article and Find Full Text PDF