Neural probes are complex devices consisting of metallic (often Pt based) electrodes, spread over an insolating/dielectric backbone. Their functionality is often limited in time because of the formation of scaring tissues around the implantation tracks. Functionalization of the probes surface can be used to limit the glial scar reaction.
View Article and Find Full Text PDFIn this article, we evaluated the electrophysiological performance of a novel, high-complexity silicon probe array. This brain-implantable probe implements a dynamically reconfigurable voltage-recording device, coordinating large numbers of electronically switchable recording sites, referred to as electronic depth control (EDC). Our results show the potential of the EDC devices to record good-quality local field potentials, and single- and multiple-unit activities in cortical regions during pharmacologically induced cortical slow wave activity in an animal model.
View Article and Find Full Text PDFIntracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
This paper reports on a compact, small-scale neural recording system combining state-of-art silicon-based probe arrays with a light-weight 32-channel wireless head stage. The system is equipped with two- and four-shaft, comb-shaped probe arrays connected to highly flexible ribbon cables enabling a reliable and controlled insertion of probe arrays through the intact dura mater into the medial prefrontal cortex and nucleus accumbens of rats. The in vivo experiments applied the 5-choice serial reaction time task (5-CSRTT) using freely behaving rats in order to understand the neural basis of sustained visual attention and impulsivity.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
October 2011
This paper presents multi-electrode arrays for in vivo neural recording applications incorporating the principle of electronic depth control (EDC), i.e., the electronic selection of recording sites along slender probe shafts independently for multiple channels.
View Article and Find Full Text PDF