Plasma membrane repair in response to damage is essential for cell viability. The ferlin family protein dysferlin plays a key role in Ca-dependent membrane repair in striated muscles. Mutations in dysferlin lead to a spectrum of diseases known as dysferlinopathies.
View Article and Find Full Text PDFThis article is the second part of a study reporting the results of a novel carbon capture and utilization (CCU) process, which converts atmospheric CO into solid carbon materials. The CCU process combines direct air capture (DAC) with catalytic methanation, which is then followed by methane pyrolysis in a reactor filled with liquid tin. While Part 1 discussed the performance of the overall process and individual process steps regarding conversions and yields, Part 2 characterizes the solid carbon products obtained under various synthesis conditions.
View Article and Find Full Text PDFCardiac muscle α-actin is a key protein of the thin filament in the muscle sarcomere that, together with myosin thick filaments, produce force and contraction important for normal heart function. Missense mutations in cardiac muscle α-actin can cause hypertrophic cardiomyopathy, a complex disorder of the heart characterized by hypercontractility at the molecular scale that leads to diverse clinical phenotypes. While the clinical aspects of hypertrophic cardiomyopathy have been extensively studied, the molecular mechanisms of missense mutations in cardiac muscle α-actin that cause the disease remain largely elusive.
View Article and Find Full Text PDFLaser-induced graphene (LIG) has been emerging as a promising electrode material for supercapacitors due to its cost-effective and straightforward fabrication approach. However, LIG-based supercapacitors still face challenges with limited capacitance and stability. To overcome these limitations, in this work, we present a novel, cost-effective, and facile fabrication approach by integrating LIG materials with candle-soot nanoparticles.
View Article and Find Full Text PDFMembers of the myosin superfamily of molecular motors are large mechanochemical ATPases that are implicated in an ever-expanding array of cellular functions. This review focuses on mammalian nonmuscle myosin-2 (NM2) paralogs, ubiquitous members of the myosin-2 family of filament-forming motors. Through the conversion of chemical energy into mechanical work, NM2 paralogs remodel and shape cells and tissues.
View Article and Find Full Text PDF