Publications by authors named "S Heckmann"

Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in .

View Article and Find Full Text PDF

Genome editing strategies in barley () typically rely on -mediated genetic transformation for the delivery of required genetic reagents involving tissue culture techniques. These approaches are genotype-dependent, time-consuming, and labor-intensive, which hampers rapid genome editing in barley. More recently, plant RNA viruses have been engineered to transiently express short guide RNAs facilitating CRISPR/Cas9-based targeted genome editing in plants that constitutively express .

View Article and Find Full Text PDF

During meiotic prophase I, sister chromatids are arranged in a loop-base array along a proteinaceous structure, called the meiotic chromosome axis. This structure is essential for synapsis and meiotic recombination progression and hence formation of genetically diverse gametes. Proteomic studies in plants aiming to unravel the composition and regulation of meiotic axes are constrained by limited meiotic cells embedded in floral organs.

View Article and Find Full Text PDF

This systematic review aimed to investigate if there is a better interceptive treatment for palatally displaced canines (PDC) in the mixed dentition stage. The PubMed/MEDLINE, CENTRAL, Scopus, and EMBASE databases were searched for randomized clinical trials related to the research topic. The gray literature and reference lists were also assessed.

View Article and Find Full Text PDF

Double haploid production is the most effective way to create true-breeding lines in a single generation. In Arabidopsis, haploid induction via mutation of the centromere-specific histone H3 (cenH3) has been shown when the mutant is outcrossed to the wild-type, and the wild-type genome remains in the haploid progeny. However, factors that affect haploid induction are still poorly understood.

View Article and Find Full Text PDF