Publications by authors named "S H Sokolow"

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in ecology, particularly for infectious diseases of public health importance that include an obligate non-human host in their transmission cycle. SDMs can create high-resolution maps of host distribution across geographical scales, reflecting baseline risk of disease. However, as SDM computational methods have rapidly expanded, there are many outstanding methodological questions.

View Article and Find Full Text PDF

Schistosomiasis is a neglected tropical disease caused by Schistosoma parasites. Schistosoma are obligate parasites of freshwater Biomphalaria and Bulinus snails, thus controlling snail populations is critical to reducing transmission risk. As snails are sensitive to environmental conditions, we expect their distribution is significantly impacted by global change.

View Article and Find Full Text PDF

Matrix vesicles (MVs) provide the initial site for amorphous hydroxyapatite (HA) formation within mineralizing osteoblasts. Although Na/Ca exchanger isoform-3 (NCX3, SLC8A3) was presumed to function as major Ca transporter responsible for Ca extrusion out of osteoblast into the calcifying bone matrix, its presence and functional role in MVs have not been investigated. In this study, we investigated the involvement of NCX3 in MV-mediated mineralization process and its impact on bone formation.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how temperature affects schistosomiasis, a disease caused by schistosome parasites and their host snails, particularly in sub-Saharan Africa where the disease is common.
  • Previous models underestimated the effective temperature range for schistosomiasis transmission, prompting this research to analyze how temperature influences the parasites and snails involved.
  • The findings indicate that optimal transmission temperatures are higher than previously thought, suggesting that climate change may increase schistosomiasis risk in regions currently suitable for the disease.
View Article and Find Full Text PDF

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic.

View Article and Find Full Text PDF