β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFBackground: Amyloid-β accumulation is a pivotal factor in Alzheimer's disease (AD) progression. As treatment for AD has not been successful yet, the most effective approach lies in early diagnosis and the subsequent delay of disease progression. Hence, this study introduces a deep learning model to predict amyloid-β accumulation in the brain.
View Article and Find Full Text PDFBackground: Previous Alzheimer's disease GWAS studies were mostly based on the European population, and the β-amyloid (Aβ) status was not considered. We performed a meta-GWAS using East Asian and European genomics data and performed prediction of Aβ status using the identified variant. We utilized single-cell transcriptome data to identify the differentially expressed gene that is affected by the variant.
View Article and Find Full Text PDFPrecise and predictable genetic elements are required to address various issues, such as suboptimal metabolic flux or imbalanced protein assembly caused by the inadequate control of polycistronic gene expression in bacteria. Here, we devised a synthetic biopart based on the translational coupling to control polycistronic gene expression. This module links the translation of genes within a polycistronic mRNA, maintaining their expression ratios regardless of coding sequences, transcription rate, and upstream gene translation rate.
View Article and Find Full Text PDFArtificial intelligence (AI) has made significant strides by imitating biological neurons and synapses through simplified models, yet incomplete neuron functionalities can limit performance and energy efficiency in handling complex tasks. Biological neurons process input signals nonlinearly, utilizing dendrites to process spatial-temporal information. This study demonstrates the compact artificial dendrite device employing memristors based on bismuth oxyselenide (BiOSe).
View Article and Find Full Text PDF