Mosaic loss of Y (mLOY) is the most common somatic chromosomal alteration detected in human blood. The presence of mLOY is associated with altered blood cell counts and increased risk of Alzheimer disease, solid tumors, and other age-related diseases. We sought to gain a better understanding of genetic drivers and associated phenotypes of mLOY through analyses of whole-genome sequencing (WGS) of a large set of genetically diverse males from the Trans-Omics for Precision Medicine (TOPMed) program.
View Article and Find Full Text PDFBackground: Systemic sclerosis (SSc) is a rare connective tissue disease, frequently affecting the skin, lungs, and pulmonary vasculature. Approximately 30-50% of SSc patients develop interstitial lung disease (SSc-ILD), with 30-35% of related deaths attributed to it. Even though men are less likely to develop systemic sclerosis, they have a higher incidence of SSc-ILD than women, and they tend to develop it at a younger age with a higher mortality rate.
View Article and Find Full Text PDFAdministrative databases are powerful tools for pediatric research but lack patient-level microbiology results. This study aimed to determine the accuracy of pathogen discharge diagnosis codes for children hospitalized with acute hematogenous musculoskeletal infections (MSKIs). Medical records for 244 children hospitalized with acute hematogenous MSKIs were manually reviewed to determine which bacterial pathogen, if any, was identified for each MSKI based on microbiology results obtained during the hospitalization.
View Article and Find Full Text PDFIntroduction: Virtual Monitor Technicians (VMTs) are crucial in remotely monitoring inpatient telemetry. However, little is known about VMT workload and intratask performance changes, and their potential impact on patient safety. This exploratory study used a high-fidelity simulation aimed to evaluate VMTs' workload and performance changes over time in telemetry monitoring and identify future research directions for performance improvement.
View Article and Find Full Text PDFThe prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology.
View Article and Find Full Text PDF