Publications by authors named "S H Deng"

Aedes albopictus (Ae. albopictus) is widely distributed and can transmit many infectious diseases, and insecticide-based interventions play an important role in vector control. However, increased insecticide resistance has become a severe public health problem, and the clarification of its detailed mechanism is a matter of urgence.

View Article and Find Full Text PDF

Cellulose nanofibers (CNFs) are ideal building blocks for creating lightweight and strong bulk structural materials due to their unique supramolecular structure and exceptional mechanical properties within the crystalline regions. However, assembling CNFs into dense bulk structural materials with customizable shape and functionalities remains a great challenge, hindering their practical applications. Here, the dewatering issue of aqueous CNF dispersions is addressed by regulating supramolecular scale hydrophilicity using lactic acid, combined with hot-press molding.

View Article and Find Full Text PDF

Atherosclerosis-induced cardiovascular diseases are a leading cause of disability and mortality worldwide. Currently, clinical diagnosis of atherosclerosis relies on analysis and assessment by large medical equipment and specialized professionals, involving invasive testing, which limits early detection and prognosis of atherosclerosis. Herein, this work develops a flexible wearable ring sensor for non-invasive real-time in situ monitoring of biomarkers associated with atherosclerosis.

View Article and Find Full Text PDF

Background: Microsatellite stable (MSS) colorectal carcinomas (CRCs) exhibit poor responsiveness to immunotherapy such as immune checkpoint inhibitors (ICIs). In the realm of clinical cancer treatment, traditional Chinese medicines (TCMs) are extensively utilized for their immunomodulatory properties. Shen Qi Yi Chang (SQYC), a clinical prescription for CRC treatment, improve the life quality of CRC patients and enhance their immune function.

View Article and Find Full Text PDF

Electric field induced antiferroelectric-ferroelectric phase transition is a double-edged sword for energy storage properties, which not only offers a congenital superiority with substantial energy storage density but also poses significant challenges such as large polarization hysteresis and poor efficiency, deteriorating the operation and service life of capacitors. Here, entropy increase effect is utilized to simultaneously break the long-range antiferroelectric order and locally adjust the fourfold commensurate modulated polarization configuration, leading to a breakthrough in the trade-off between recoverable energy storge density (14.8 J cm) and efficiency (90.

View Article and Find Full Text PDF