We present an experimental investigation of the formation stage of a collisionless shock when the flow velocity is aligned with an ambient magnetic field utilizing laser-driven, super-Alfvénic plasma flows. As the flows interact, electromagnetic streaming instabilities develop. Proton deflectometry is used to visualize these electromagnetic fluctuations indicating the development of the ion-Weibel instability and the nonresonant instability.
View Article and Find Full Text PDFHigh-level delafloxacin-resistant (H-L DLX-R) isolates (minimum inhibitory concentration ≥1 mg/L) associated with mutations affecting position 84 of ParC have emerged. We aimed to elucidate the role of these mutations as a mechanism of H-L DLX resistance in methicillin-resistant (MRSA) isolates recovered from blood cultures. Susceptibility to DLX was determined in 75 MRSA isolates by E-test, and an rt-PCR was developed to detect mutations affecting position 84 of ParC to screen a further 185 MRSA isolates.
View Article and Find Full Text PDFAnthropogenic Marine Litter (AML) accumulating on beaches causes damage to coastal ecosystems and high costs to local communities. Volunteers sampled AML on 130 beaches along the central and southern East Pacific coasts, with AML densities ranging from 0.46 to 2.
View Article and Find Full Text PDFThe collisionless ion-Weibel instability is a leading candidate mechanism for the formation of collisionless shocks in many astrophysical systems, where the typical distance between particle collisions is much larger than the system size. Multiple laboratory experiments aimed at studying this process utilize laser-driven (I≳10^{15} W/cm^{2}), counterstreaming plasma flows (V≲2000 km/s) to create conditions unstable to Weibel-filamentation and growth. This technique intrinsically produces temporally varying plasma conditions at the midplane of the interaction where Weibel-driven B fields are generated and studied.
View Article and Find Full Text PDFMagnetic reconnection can occur when two plasmas, having anti-parallel components of the magnetic field, encounter each other. In the reconnection plane, the anti-parallel component of the field is annihilated and its energy released in the plasma. Here, we investigate through laboratory experiments the reconnection between two flux tubes that are not strictly anti-parallel.
View Article and Find Full Text PDF