Sugar accumulation in sorghum (Sorghum bicolor (L.) Moench) stems is a complex trait that is particularly plastic in response to photoperiod. This study investigated sucrose accumulation in a sterile (no grain filling) and fertile near-isogenic line of the photoperiod-sensitive cultivar IS2848 in two greenhouse experiments.
View Article and Find Full Text PDFGrain and sweet sorghum (Sorghum bicolor (L.) Moench) differ in their ability to produce either high grain yield or high sugar concentration in the stems. Some cultivars of sorghum may yield both grains and sugar.
View Article and Find Full Text PDFSpring geophytes produce larger storage organs and present delayed leaf senescence under lower growth temperature. Bulb and leaf carbon metabolism were investigated in Erythronium americanum to identify some of the mechanisms that permit this improved growth at low temperature. Plants were grown under three day/night temperature regimes: 18/14 °C, 12/8 °C, and 8/6 °C.
View Article and Find Full Text PDFBackground And Aims: Woodland spring ephemerals exhibit a relatively short epigeous growth period prior to canopy closure. However, it has been suggested that leaf senescence is induced by a reduction in the carbohydrate sink demand, rather than by changes in light availability. To ascertain whether a potentially higher net carbon (C) assimilation rate could shorten leaf lifespan due to an accelerated rate of storage, Erythronium americanum plants were grown under ambient (400 ppm) and elevated (1100 ppm) CO2 concentrations.
View Article and Find Full Text PDF