Transposable elements (TEs) are mobile genomic elements constituting a big fraction of eukaryotic genomes. They ignite an evolutionary arms race with host genomes, which in turn evolve strategies to restrict their activity. Despite being tightly repressed, TEs display precisely regulated expression patterns during specific stages of mammalian development, suggesting potential benefits for the host.
View Article and Find Full Text PDFThe planarian Schmidtea mediterranea is being studied as a model species for regeneration, but the assembly of planarian genomes remains challenging. Here, we report a high-quality haplotype-phased, chromosome-scale genome assembly of the sexual S2 strain of S. mediterranea and high-quality chromosome-scale assemblies of its three close relatives, S.
View Article and Find Full Text PDFThis comprehensive Review delves into the chemical principles governing RNA-mediated crowding events, commonly referred to as granules or biological condensates. We explore the pivotal role played by RNA sequence, structure, and chemical modifications in these processes, uncovering their correlation with crowding phenomena under physiological conditions. Additionally, we investigate instances where crowding deviates from its intended function, leading to pathological consequences.
View Article and Find Full Text PDFObjective: This study investigates the prevalence of pathogenic variants in the mechanistic target of rapamycin (mTOR) pathway in surgical specimens of malformations of cortical development (MCDs) and cases with negative histology. The study also aims to evaluate the predictive value of genotype-histotype findings on the surgical outcome.
Methods: The study included patients with drug-resistant focal epilepsy who underwent epilepsy surgery.