Marine invertebrates constantly interact with a wide range of microorganisms in their aquatic environment and possess an effective defense system that has enabled their existence for millions of years. Their lack of acquired immunity sets marine invertebrates apart from other marine animals. Invertebrates could rely on their innate immunity, providing the first line of defense, survival, and thriving.
View Article and Find Full Text PDFThe rise of antibiotic-resistant bacteria and the emergence of new pathogens have created a need for new strategies to fight against infectious diseases. One promising approach is the use of antimicrobial peptides produced by a certain species of bacteria, known as bacteriocins, which are active against other strains of the same or related species. Bacteriocins can help in the treatment and prevention of infectious diseases.
View Article and Find Full Text PDFStimulation of innate immunity by bacterial molecular patterns can induce an enhanced cellular immune response to pathogens that are associated with innate immune memory shaped by epigenetic changes. Immunological memory can be expressed in the acceleration/intensification of inflammation, as well as in the exact opposite-to maintain tolerance and non-response to a repeated stimulus. Tolerance is one of the central concepts of immunity and is ensured by the consistency of all parts of the immune response.
View Article and Find Full Text PDFThe innate immune system provides an adequate response to stress factors and pathogens through pattern recognition receptors (PRRs), located on the surface of cell membranes and in the cytoplasm. Generally, the structures of PRRs are formed by several domains that are evolutionarily conserved, with a fairly high degree of homology in representatives of different species. The orthologs of TLRs, NLRs, RLRs and CLRs are widely represented, not only in marine chordates, but also in invertebrates.
View Article and Find Full Text PDF