Publications by authors named "S GroSSmann"

Gram-negative bacteria can use the type III secretion system (T3SS) to inject effector proteins into eukaryotic target cells. In this chapter, we describe the application of a light-controlled T3SS, based on the targeted sequestration of an essential dynamic T3SS component with the help of optogenetic interaction switches. This method enables to control the secretion or injection into eukaryotic cells for a wide range of protein cargos with high temporal and spatial precision.

View Article and Find Full Text PDF

Background: The inability of biologics to pass the plasma membrane prevents their development as therapeutics for intracellular targets. To address the lack of methods for cytosolic protein delivery, we used the type III secretion system (T3SS) of Y. enterocolitica, which naturally injects bacterial proteins into eukaryotic host cells, to deliver monobody proteins into cancer cells.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are increasingly being used in industrial applications, but their toxicological data in animals and humans are still sparse. To assess the toxicological dose-response of CNTs and to evaluate their pulmonary biopersistence, their quantification in tissues, especially lungs, is crucial. There are currently no reference methods or reference materials for low levels of CNTs in organic matter.

View Article and Find Full Text PDF

Objective: to evaluate the effects of the red and near-infrared wavelength lasers in isolated and simultaneous way on the modulation of inflammatory cytokines produced by human keratinocytes (HaCaT) challenged by cytokines of human monocytes stimulated by lipopolysaccharide from .

Design: HaCaT cells was previously exposed to the laser with wavelengths red (660 nm), near-infrared (808 nm). Then, HaCat cells were stimulated with the supernatant of lipopolysaccharide-challenged peripheral blood cells.

View Article and Find Full Text PDF