Mass cytometry enables deep profiling of biological samples at single-cell resolution. This technology is more than relevant in cancer research due to high cellular heterogeneity and complexity. Downstream analysis of high-dimensional datasets increasingly relies on machine learning (ML) to extract clinically relevant information, including supervised algorithms for classification and regression purposes.
View Article and Find Full Text PDFIMPRINTS-CETSA (Integrated Modulation of Protein Interaction States-Cellular Thermal Shift Assay) provides a highly resolved means to systematically study the interactions of proteins with other cellular components, including metabolites, nucleic acids and other proteins, at the proteome level, but no freely available and user-friendly data analysis software has been reported. Here, we report IMPRINTS.CETSA, an R package that provides the basic data processing framework for robust analysis of the IMPRINTS-CETSA data format, from preprocessing and normalization to visualization.
View Article and Find Full Text PDFSummary: DIAgui is an R package to simplify the processing of the report file from the DIA-NN software thanks to a Shiny application. It returns the quantification of either the precursors, the peptides, the proteins, or the genes thanks to the MaxLFQ algorithm. In addition, the latest version provides the Top3 and iBAQ quantification and the number of peptides used for the quantification.
View Article and Find Full Text PDF