Publications by authors named "S Gowthaman"

In this study, the electrocoagulation (EC) treatment was used to minimize and separate pollutants from textile industrial wastewater (TIWW), including high color, chemical oxygen demand (COD), total organic carbon (TOC), and total dissolved solids (TDS). To enhance the EC treatment efficiency, a novel strategy has been followed in the study that involves thin-film coating on 316 stainless steel (SS) electrodes with banana peel-derived activated carbon (BPAC) by dip coating, spin coating, or spray coating. Among the different types of coating, thickness and contact angle measurements have elucidated that the spray coating of BPAC on SS electrode is the best tool with minimum thickness and contact angle.

View Article and Find Full Text PDF

Microbial induced carbonate precipitation (MICP) through the ureolysis metabolic pathway is one of the most studied topics in biocementation due to its high efficiency. Although excellent outcomes have proved the potential of this technique, microorganisms face some obstacles when considering complicated situations in the real field, such as bacterial adaptability and survivability issues. This study made the first attempt to seek solutions to this issue from the air, exploring ureolytic airborne bacteria with resilient features to find a solution to survivability issues.

View Article and Find Full Text PDF

Microbial induced carbonate precipitation (MICP) is one of the most commonly researched topics on biocementation, which achieves cementation of soil particles by carbonate from urea hydrolysis catalyzed by microbial urease. Although most MICP studies are limited to stabilizing sandy soils, more researchers are now turning their interest to other weak soils, particularly organic soils. To stabilize organic soils, the influence of humic substances should be investigated since it has been reported to inhibit urease activity and disrupt the formation of calcium carbonate.

View Article and Find Full Text PDF

Biocementation using enzyme induced carbonate precipitation (EICP) process has become an innovative method for soil improvement. One of the major limitations in scaling-up of biocement treatment is the emission of gaseous ammonia during the urea hydrolysis, which is environmentally hazardous. In order to eliminate this shortcoming, this paper presents a series of experiments performed to evaluate a novel approach for preventing the ammonia byproducts in the EICP process via the use of polyacrylic acid (PAA).

View Article and Find Full Text PDF

Natural eco-friendly materials are recently employed in products to replace synthetic materials due to their superior benefits in preserving the environment. The herb is widely distributed in continents like Asia and Africa and used traditionally to treat fever, leprosy, asthma, jaundice, and bronchitis. Mucilage of was accordingly extracted, isolated by a maceration technique, and precipitated.

View Article and Find Full Text PDF