Publications by authors named "S Glemin"

Article Synopsis
  • Genetic diversity among species is influenced by life history traits, particularly mating systems, with self-pollinating species showing lower genetic diversity compared to outcrossing ones.
  • Research indicates that selfing amplifies linked selection, affecting genetic diversity across the genome, though it also may be influenced by population bottlenecks and turnover rates.
  • In a study of various grass species with differing mating systems, findings reveal that selfing significantly impacts genetic diversity and selection efficacy, suggesting adaptive traits are primarily found in regions with high recombination in outcrossing species.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created detailed recombination maps from genetic data for 11 plant species, revealing varying patterns and intensities of recombination in genic regions influenced by hotspot locations and gene structures.
  • * The findings highlight that while hotspots commonly cluster around coding sequence boundaries, the significance of the 3' end of genes varies among species, indicating that hotspot location is more critical than size or intensity in explaining recombination diversity.
View Article and Find Full Text PDF

Sexual reproduction is widespread, but asexual lineages have repeatedly arisen from sexual ancestors across a wide range of eukaryotic taxa. The molecular changes underpinning the switch to asexuality remain elusive, particularly in organisms with haploid sexual systems. Here we explore independent events of loss of sex in the brown alga Scytosiphon, examine the proximate and evolutionary mechanisms involved, and test the importance of sexual conflict on gene expression changes following loss of sex.

View Article and Find Full Text PDF

Many traits are polygenic, affected by multiple genetic variants throughout the genome. Selection acting on these traits involves co-ordinated allele-frequency changes at these underlying variants, and this process has been extensively studied in random-mating populations. Yet many species self-fertilise to some degree, which incurs changes to genetic diversity, recombination and genome segregation.

View Article and Find Full Text PDF

Surprisingly little attention has been given to the impact of selfing on speciation, even though selfing reduces gene flow between populations and affects other key population genetics parameters. Here we review recent theoretical work and compile empirical data from crossing experiments and genomic and phylogenetic studies to assess the effect of mating systems on the speciation process. In accordance with theoretical predictions, we find that accumulation of hybrid incompatibilities seems to be accelerated in selfers, but there is so far limited empirical support for a predicted bias toward underdominant loci.

View Article and Find Full Text PDF