Publications by authors named "S Gimelli"

The repair of damaged articular cartilage is an unmet medical need. Chondrocyte-based cell therapy has been used to repair cartilage for over 20 years despite current limitations. Chondrocyte dedifferentiation upon expansion in monolayer is well known and is the main obstacle to their use as cell source for cartilage repair.

View Article and Find Full Text PDF

Dermal fibroblasts isolated from an apparently healthy 50-year-old man were successfully transformed into induced pluripotent stem cells (iPSCs) by using the integration-free CytoTune-iPS Sendai Reprogramming method. The generated iPSC line has been expanded under feeder-free conditions and displayed all hallmarks of a standard pluripotent stem cell line such as a normal karyotype, expression of pluripotent factors and differentiation capacity into the three germ layers.

View Article and Find Full Text PDF

Ongoing chromosomal instability in neoplasia (CIN) generates intratumor genomic heterogeneity and limits the efficiency of oncotherapeutics. Neoplastic human cells utilizing the alternative lengthening of telomeres (ALT)-pathway, display extensive structural and numerical CIN. To unravel patterns of genome evolution driven by oncogene-replication stress, telomere dysfunction, or genotoxic therapeutic interventions, we examined by comparative genomic hybridization five karyotypically-diverse outcomes of the ALT osteosarcoma cell line U2-OS.

View Article and Find Full Text PDF

MECP2 duplication syndrome (MDS; OMIM 300260) is an X-linked neurodevelopmental disorder caused by nonrecurrent duplications of the Xq28 region involving the gene methyl-CpG-binding protein 2 (MECP2; OMIM 300005). The core phenotype of affected individuals includes infantile hypotonia, severe intellectual disability, very poor-to-absent speech, progressive spasticity, seizures, and recurrent infections. The condition is 100% penetrant in males, with observed variability in phenotypic expression within and between families.

View Article and Find Full Text PDF

Disorders/differences of sex development (DSD) cause profound psychological and reproductive consequences for the affected individuals, however, most are still unexplained at the molecular level. Here, we present a novel gene, 3-hydroxy-3-methylglutaryl coenzyme A synthase 2 (HMGCS2), encoding a metabolic enzyme in the liver important for energy production from fatty acids, that shows an unusual expression pattern in developing fetal mouse gonads. Shortly after gonadal sex determination it is up-regulated in the developing testes following a very similar spatial and temporal pattern as the male-determining gene Sry in Sertoli cells before switching to ovarian enriched expression.

View Article and Find Full Text PDF