We demonstrate here for the first time that charge emitted by laser-target interactions at petawatt peak-powers can be efficiently deposited on a capacitor-collector structure far away from the target and lead to the rapid (tens of nanoseconds) generation of large quasi-static electric fields over wide (tens-of-centimeters scale-length) regions, with intensities much higher than common ElectroMagnetic Pulses (EMPs) generated by the same experiment in the same position. A good agreement was obtained between measurements from a classical field-probe and calculations based on particle-flux measurements from a Thomson spectrometer. Proof-of-principle particle-in-cell simulations reproduced the measurements of field evolution in time, giving a useful insight into the charging process, generation and distribution of fields.
View Article and Find Full Text PDFWe report on the development and deployment of an optical diagnostic for single-shot measurement of the electric-field components of electromagnetic pulses from high-intensity laser-matter interactions in a high-noise environment. The electro-optic Pockels effect in KDP crystals was used to measure transient electric fields using a geometry easily modifiable for magnetic field detection via Faraday rotation. Using dielectric sensors and an optical fibre-based readout ensures minimal field perturbations compared to conductive probes and greatly limits unwanted electrical pickup between probe and recording system.
View Article and Find Full Text PDFA streaked pyrometer has been designed to measure the temperature of ≈100 μm diameter heated targets in the warm dense matter region. The diagnostic has picosecond time resolution. Spatial resolution is limited by the streak camera to 4 μm in one dimension; the imaging system has superior resolution of 1 μm.
View Article and Find Full Text PDFWe report on the design and testing of a multiwavelength interferometry system for the Orion laser facility based upon the use of self-path matching Wollaston prisms. The use of UV corrected achromatic optics allows for both easy alignment with an eye-safe light source and small (∼ millimeter) offsets to the focal lengths between different operational wavelengths. Interferograms are demonstrated at wavelengths corresponding to first, second, and fourth harmonics of a 1054 nm Nd:glass probe beam.
View Article and Find Full Text PDFWe report on the design, construction, and characterisation of a new class of in-vacuo optical levitation trap optimised for use in high-intensity, high-energy laser interaction experiments. The system uses a focused, vertically propagating continuous wave laser beam to capture and manipulate micro-targets by photon momentum transfer at much longer working distances than commonly used by optical tweezer systems. A high speed (10 kHz) optical imaging and signal acquisition system was implemented for tracking the levitated droplets position and dynamic behaviour under atmospheric and vacuum conditions, with ±5 μm spatial resolution.
View Article and Find Full Text PDF