Publications by authors named "S Gieschen"

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers.

View Article and Find Full Text PDF

A new ultra-low temperature experiment including a superconducting vector magnet has been developed for soft x-ray absorption spectroscopy experiments at third generation synchrotron light sources. The sample is cooled below 50 mK by a cryogen free (3)He-(4)He dilution refrigerator. At the same time, magnetic fields of up to ±7 T in the horizontal direction and ±0.

View Article and Find Full Text PDF

An extreme ultraviolet split and femtosecond delay unit based on grazing incidence Mach-Zehnder geometry has been designed and implemented on the plane grating monochromator beamline PG2 at FLASH, the Free Electron Laser at DESY. This device splits the FLASH radiation into two beams, which can independently be steered, filtered and temporally delayed between -5.1 and +5.

View Article and Find Full Text PDF

We have measured the average single-pulse longitudinal coherence characteristics of FLASH, a self amplified spontaneous emission free electron laser, at extreme UV wavelengths. Electric field autocorrelation measurements in the time domain were enabled by a wavefront division beam splitter applied to a tunable delay Mach-Zehnder interferometer. These data agree with the spectral bandwidth measurements made in the frequency domain.

View Article and Find Full Text PDF