Many daily activities depend on visual inputs to improve motor accuracy and minimize errors. Reaching tasks present an ecological framework for examining these visuomotor interactions, but our comprehension of how different amounts of visual input affect motor outputs is still limited. The present study fills this gap, exploring how hand-related visual bias affects motor performance in a reaching task (to draw a line between two dots).
View Article and Find Full Text PDFMechanosensing and mechanotransduction pathways between the Extracellular Matrix (ECM) and cells form the essential crosstalk that regulates cell homeostasis, tissue development, morphology, maintenance, and function. Understanding these mechanisms involves creating an appropriate cell support that elicits signals to guide cellular functions. In this context, polymers can serve as ideal molecules for producing biomaterials designed to mimic the characteristics of the ECM, thereby triggering responsive mechanisms that closely resemble those induced by a natural physiological system.
View Article and Find Full Text PDF