Unfortunately, survivors of traumatic stress exposure (TSE) frequently develop adverse posttraumatic neuropsychiatric sequelae (APNS) such as chronic pain and stress/depressive symptoms. Increasing evidence indicates that there is a 'window of opportunity' following TSE in which therapeutic interventions are most effective against APNS, yet mechanisms accounting for this observation are poorly understood. Here, we aimed to better understand such mechanisms by generating snapshots of the transcriptional landscape in the early aftermath of TSE across tissues and time.
View Article and Find Full Text PDFBackground: Epigenetic changes can bring insight into gene regulatory mechanisms associated with disease pathogenicity, including chronicity and increased vulnerability. To date, we are yet to identify genes sensitive to epigenetic regulation that contribute to the maintenance of chronic pain and with an epigenetic landscape indicative of the susceptibility to persistent pain. Such genes would provide a novel opportunity for better pain management, as their epigenetic profile could be targeted for the treatment of chronic pain or used as an indication of vulnerability for prevention strategies.
View Article and Find Full Text PDFFront Pain Res (Lausanne)
September 2023
Philos Trans R Soc Lond B Biol Sci
November 2019
Animal behaviours are affected not only by inherited genes but also by environmental experiences. For example, in both rats and humans, stressful early-life events such as being reared by an inattentive mother can leave a lasting trace and affect later stress response in adult life. This is owing to a chemical trace left on the chromatin attributed to so-called epigenetic mechanisms.
View Article and Find Full Text PDF