Publications by authors named "S Genieys"

Atherosclerosis begins as an inflammation in blood vessel walls (intima). The inflammatory response of the organism leads to the recruitment of monocytes. Trapped in the intima, they differentiate into macrophages and foam cells leading to the production of inflammatory cytokines and further recruitment of white blood cells.

View Article and Find Full Text PDF

Atherosclerosis is an inflammatory disease. The atherosclerosis process starts when low-density lipoproteins (LDLs) enter the intima of the blood vessel, where they are oxidized (ox-LDLs). The anti-inflammatory response triggers the recruitment of monocytes.

View Article and Find Full Text PDF

When several symbionts infect simultaneously the same host (multiple infections), the interactions between them affect the dynamics of the symbiotic population. Despite their widespread occurrence, associations with multiple vertically transmitted symbionts have attracted little attention. Vertical transmission tends to homogenize the symbiotic population because of the bottleneck that occurs at transmission.

View Article and Find Full Text PDF

We propose a new mathematical model of erythropoiesis that takes a positive feedback of erythrocytes on progenitor apoptosis into account, and incorporates a negative feedback of erythrocytes on progenitor self-renewal. The resulting model is a system of age-structured equations that reduces to a system of delay differential equations where the delays account for progenitor compartment duration and cell cycle length. We compare this model with experimental data on an induced-anemia in mice that exhibit damped oscillations of the hematocrit before it returns to equilibrium.

View Article and Find Full Text PDF

Endosymbiotic bacteria are often transmitted vertically from one host generation to the next via oocytes cytoplasm. The generally small number of colonizing bacteria in the oocytes leads to a bottleneck at each generation, resulting in genetic homogenization of the symbiotic population. Nevertheless, in many of the species infected by Wolbachia (maternally transmitted bacteria), individuals do sometimes simultaneously harbor several bacterial strains, owing to the fact that Wolbachia induces cytoplasmic incompatibility (CI) that maintains multiple infections.

View Article and Find Full Text PDF