Publications by authors named "S Genier"

Rab4a is a small GTPase associated with endocytic compartments and a key regulator of early endosomes recycling. Gathering evidence indicates that its expression and activation are required for the development of metastases. Rab4a-intrinsic GTPase properties that control its activity, i.

View Article and Find Full Text PDF

With over 30% of current medications targeting this family of proteins, G-protein-coupled receptors (GPCRs) remain invaluable therapeutic targets. However, due to their unique physicochemical properties, their low abundance, and the lack of highly specific antibodies, GPCRs are still challenging to study in vivo. To overcome these limitations, we combined here transgenic mouse models and proteomic analyses in order to resolve the interactome of the δ-opioid receptor (DOPr) in its native in vivo environment.

View Article and Find Full Text PDF

Mechanisms controlling the recycling of G protein-coupled receptors (GPCRs) remain largely unclear. We report that GGA3 (Golgi-associated, γ adaptin ear containing, ADP-ribosylation factor-binding protein 3) regulates the recycling and signaling of the PGD receptor DP1 through a new mechanism. An endogenous interaction between DP1 and GGA3 was detected by co-immunoprecipitation in HeLa cells.

View Article and Find Full Text PDF

Accumulating evidence indicates that G protein-coupled receptors (GPCRs) interact with Rab GTPases during their intracellular trafficking. How GPCRs recruit and activate the Rabs is unclear. Here, we report that depletion of endogenous L-type prostaglandin D synthase (L-PGDS) in HeLa cells inhibited recycling of the prostaglandin D (PGD) DP1 receptor (DP1) to the cell surface after agonist-induced internalization and that L-PGDS overexpression had the opposite effect.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) contain highly hydrophobic domains that are subject to aggregation when exposed to the crowded environment of the cytoplasm. Many events can lead to protein aggregation such as mutations, endoplasmic reticulum (ER) stress, and misfolding. These processes have been widely known to impact GPCR folding, maturation, and localization.

View Article and Find Full Text PDF