The design of protein-metal complexes is rapidly advancing, with applications spanning catalysis, sensing, and bioremediation. We report a comprehensive investigation of METPsc1, a Miniaturized Electron Transfer Protein, in complex with cadmium. This study elucidates the impact of metal coordination on protein folding and structural dynamics across temperatures from 100 K to 300 K.
View Article and Find Full Text PDFOxidases and peroxidases have found application in the field of chlorine-free organic dye degradation in the paper, toothpaste, and detergent industries. Nevertheless, their widespread use is somehow hindered because of their cost, availability, and batch-to-batch reproducibility. Here, we report the catalytic proficiency of a miniaturized synthetic peroxidase, Fe-Mimochrome VI*a, in the decolorization of four organic dyes, as representatives of either the heterocyclic or triarylmethane class of dyes.
View Article and Find Full Text PDFThe extraordinary potential of hydrogen as a clean and sustainable fuel has sparked the interest of the scientific community to find environmentally friendly methods for its production. Biological catalysts are the most attractive solution, as they usually operate under mild conditions and do not produce carbon-containing byproducts. Hydrogenases promote reversible proton reduction to hydrogen in a variety of anoxic bacteria and algae, displaying unparallel catalytic performances.
View Article and Find Full Text PDFDesigning metal sites into de novo proteins has significantly improved, recently. However, identifying the minimal coordination spheres, able to encompass the necessary information for metal binding and activity, still represents a great challenge, today. Here, we test our understanding with a benchmark, nevertheless difficult, case.
View Article and Find Full Text PDFDe novo metalloprotein design is a remarkable approach to shape protein scaffolds toward specific functions. Here, we report the design and characterization of Due Rame 1 (DR1), a de novo designed protein housing a di-copper site and mimicking the Type 3 (T3) copper-containing polyphenol oxidases (PPOs). To achieve this goal, we hierarchically designed the first and the second di-metal coordination spheres to engineer the di-copper site into a simple four-helix bundle scaffold.
View Article and Find Full Text PDF