Publications by authors named "S Galvan"

New peak detection (NPD) is a significant component of the multiattribute method (MAM) for MS use to facilitate the detection of quality attributes exhibiting abnormal ratio changes, vanishing attributes, or newly emerging attributes. However, challenges remain to get a balanced sensitivity and minimize false positives in NPD. In this study, we have developed a robust NPD and identification method to enhance sensitivity 10-fold (0.

View Article and Find Full Text PDF
Article Synopsis
  • Hexim proteins regulate RNA by targeting 7SK long non-coding RNA, which is crucial for controlling mRNA transcription in eukaryotic cells.
  • 7SK RNPs manage the levels of the kinase P-TEFb by keeping it inactive, thus affecting the transition of RNA polymerase II from pausing to elongation during transcription.
  • The study reveals how Hexim1 interacts with 7SK RNA to expose P-TEFb binding sites, shedding light on the regulation mechanism and the specificity of Hexim for RNA.
View Article and Find Full Text PDF

Synthetic biology aims to contribute to the development of next-generation patient-specific cell-based therapies for chronic diseases especially through the construction of sophisticated synthetic gene switches to enhance the safety and spatiotemporal controllability of engineered cells. Indeed, switches that sense and process specific cues, which may be either externally administered triggers or endogenous disease-associated molecules, have emerged as powerful tools for programming and fine-tuning therapeutic outputs. Living engineered cells, often referred to as designer cells, incorporating such switches are delivered to patients either as encapsulated cell implants or by infusion, as in the case of the clinically approved CAR-T cell therapies.

View Article and Find Full Text PDF

Climate plays a crucial role in shaping species distribution and evolution over time. Dr Vrba's Resource-Use hypothesis posited that zones at the extremes of temperature and precipitation conditions should host a greater number of climate specialist species than other zones because of higher historical fragmentation. Here, we tested this hypothesis by examining climate-induced fragmentation over the past 5 million years.

View Article and Find Full Text PDF

A fundamental question in dinosaur evolution is how they adapted to long-term climatic shifts during the Mesozoic and when they developed environmentally independent, avian-style acclimatization, becoming endothermic. The ability of warm-blooded dinosaurs to flourish in harsher environments, including cold, high-latitude regions, raises intriguing questions about the origins of key innovations shared with modern birds, indicating that the development of homeothermy (keeping constant body temperature) and endothermy (generating body heat) played a crucial role in their ecological diversification. Despite substantial evidence across scientific disciplines (anatomy, reproduction, energetics, biomechanics, osteohistology, palaeobiogeography, geochemistry, and soft tissues), a consensus on dinosaur thermophysiology remains elusive.

View Article and Find Full Text PDF