In this viewpoint, we propose directions for research about loneliness among young adults. We argue that loneliness should not be individualized as a problem of 'lonely people' and 'at risk' groups but rather approached as an environmental and collective problem. Based on scholarship about the challenges that young adults face nowadays we identify three central themes: landscapes, cultures and technologies of loneliness.
View Article and Find Full Text PDFStructural and functional studies of the carminomycin 4--methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides.
View Article and Find Full Text PDFPyridoxal phosphate-dependent enzymes able to use oxygen as a co-substrate have emerged in multiple protein families. Here, we use crystallography to solve the 2.40 Å resolution crystal structure of Cap15, a nucleoside biosynthetic enzyme that catalyzes the oxidative decarboxylation of glycyl uridine.
View Article and Find Full Text PDFThe enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
January 2022
Dynemicin is an enediyne natural product from Micromonospora chersina ATCC53710. Access to the biosynthetic gene cluster of dynemicin has enabled the in vitro study of gene products within the cluster to decipher their roles in assembling this unique molecule. This paper reports the crystal structure of DynF, the gene product of one of the genes within the biosynthetic gene cluster of dynemicin.
View Article and Find Full Text PDF