Publications by authors named "S G Sotocinal"

Chronobiological approaches have emerged as tools to study pain and inflammation. Although time-of-day effects on the expression of pain after injury have been studied, it remains unaddressed whether the timing of the injury itself can alter subsequent pain behaviors. The aim of this study was to assess postsurgical pain behaviors in a mouse hind paw incision assay in a circadian-dependent manner.

View Article and Find Full Text PDF

Facial grimacing is used to quantify spontaneous pain in mice and other mammals, but scoring relies on humans with different levels of proficiency. Here, we developed a cloud-based software platform called PainFace ( http://painface.net ) that uses machine learning to detect 4 facial action units of the mouse grimace scale (orbitals, nose, ears, whiskers) and score facial grimaces of black-coated C57BL/6 male and female mice on a 0 to 8 scale.

View Article and Find Full Text PDF

Descending control of nociception (DCN; also known as conditioned pain modulation [CPM], the behavioral correlate of diffuse noxious inhibitory controls) is the phenomenon whereby pain inhibits pain in another part of the body and is the subject of increasing study because it may represent a biomarker of chronic pain. We recently discovered that pain modulation on the application of a DCN paradigm involving low-intensity test stimuli occurs in the direction of hyperalgesia in healthy mice and rats, whereas the use of high-intensity stimuli produces analgesia. To elucidate the physiological mechanisms underlying hyperalgesic DCN, we administered agonists and antagonists of norepinephrine (NE) and serotonin (5-HT) receptors, key neurochemical players in the production of analgesic DCN.

View Article and Find Full Text PDF

Human epidemiological studies suggest that chronic pain can increase mortality risk. We investigated whether this was true in mice so that underlying mechanisms might be identified. At 10 weeks of age, C57BL/6 mice of both sexes received sham or spared nerve injury (SNI) surgery producing neuropathic pain.

View Article and Find Full Text PDF

In an attempt to improve reproducibility, more attention is being paid to potential sources of stress in the laboratory environment. Here, we report that the mere proximity of pregnant or lactating female mice causes olfactory-mediated stress-induced analgesia, to a variety of noxious stimuli, in gonadally intact male mice. We show that exposure to volatile compounds released in the urine of pregnant and lactating female mice can themselves produce stress and associated pain inhibition.

View Article and Find Full Text PDF