Publications by authors named "S G Rudra"

Handling venomous snakes poses a significant risk of envenomation. In the case of spitting cobras, additional precautions, like wearing face shields, are necessary to prevent ophthalmic envenomation. Although, the Monocled Cobra (Naja kaouthia) is not a true spitting cobra, however some spitting events has been reported from Northeastern India and Nepal but ocular envenomation is scarce.

View Article and Find Full Text PDF

Metal/semiconductor superlattices represent a fascinating frontier in materials science and nanotechnology, where alternating layers of metals and semiconductors are precisely engineered at the atomic and nano-scales. Traditionally, epitaxial metal/semiconductor superlattice growth requires constituent materials from the same family, exhibiting identical structural symmetry and low lattice mismatch. Here, beyond this conventional constraint, a novel class of epitaxial lattice-matched metal/semiconductor superlattices is introduced that utilizes refractory hexagonal elemental transition metals and wide-bandgap III-nitride semiconductors.

View Article and Find Full Text PDF

Plasmon resonance represents the collective oscillation of free electron gas density and enables enhanced light-matter interactions in nanoscale dimensions. Traditionally, the classical Drude model describes plasmonic excitation, wherein plasma frequency exhibits no spatial dispersion. Here, we show conclusive experimental evidence of the breakdown of plasmon resonance and a consequent metal-insulator transition in an ultrathin refractory plasmonic material, hafnium nitride (HfN).

View Article and Find Full Text PDF

This study examined the impact of steam-infusion on defatted peanut (Pn), chickpea (Cp), and rice (R) protein isolates (PI) and their blends. Steam infusion significantly increased protein content (up to 83.13 % in PnPI, 75.

View Article and Find Full Text PDF
Article Synopsis
  • Electron mobility in nitride semiconductors like scandium nitride (ScN) is hindered by various scattering mechanisms, including electron-phonon interactions and defects.
  • ScN's electron mobility varies based on growth conditions and theoretical models suggest an intrinsic limit of around 524 cm/V·s at room temperature, which is affected by ionized-impurity and grain-boundary scatterings.
  • The study proposes techniques like modulation doping to enhance electron mobility in ScN, which is essential for improving its performance in electronic devices.
View Article and Find Full Text PDF