The g factor of the 56 ns half-life isomeric state in ^{128}Cs has been measured using the time-differential perturbed angular distribution method. This state is the bandhead of the positive-parity chiral rotational band, which emerges when an unpaired proton, an unpaired neutron hole, and an even-even core are coupled such that their angular momentum vectors are aplanar (chiral configuration). g-factor measurements can give important information on the relative orientation of the three angular momentum vectors.
View Article and Find Full Text PDFThe results of the Doppler-shift attenuation method lifetime measurements in partner bands of 128Cs and 132La are presented. Experimental reduced transition probabilities in 128Cs are compared with theoretical calculations done in the frame of the core-quasiparticle coupling model. The electromagnetic properties, energy and spin of levels belonging to the partner bands show that 128Cs is the best known example revealing the chiral symmetry breaking phenomenon.
View Article and Find Full Text PDF