Publications by authors named "S G Rijpkema"

Lactide, possessing two stereocenters and thus three distinct configurations (DD, DL, and LL), serves as a captivating building block for polymers and self-assembly. Notably, polylactide (PLA) exhibits stereocomplexation, displaying heightened interactions between different configurations compared with interactions within the same configuration. This characteristic renders PLA an intriguing subject for investigating self-assembly behavior.

View Article and Find Full Text PDF

Bacterial biofilms represent an escalating global health concern with the proliferation of drug resistance and hospital-acquired infections annually. Numerous strategies are under exploration to combat biofilms and preempt the development of antibacterial resistance. Among these, mechanical disruption of biofilms and enclosed bacteria presents a promising avenue, aiming to induce membrane permeabilization and consequent lethal damage.

View Article and Find Full Text PDF

The global threat to public health posed by antibiotic-resistant bacterial infections requires the exploration of innovative approaches. Nanomaterials, particularly silver nanoparticles (AgNPs) and nanoclusters (AgNCs), have emerged as potential solutions to address the pressing issue of a bacterial healthcare crisis. However, the high cytotoxicity levels and low stability associated with AgNPs and AgNCs limit their applicability.

View Article and Find Full Text PDF

The surface area of anisotropic polymeric assemblies is a critical parameter concerning their properties. However, it is still a grand challenge for traditional techniques to determine the surface area. Here, a molecular probe loading (MPL) method is developed to measure the surface area of anisotropic polymersomes in the shape of tube, disc, and stomatocyte.

View Article and Find Full Text PDF

An adaptive surface that can sense and respond to environmental stimuli is integral to smart functional materials. Here, we report pH-responsive anchoring systems onto the poly(ethylene glycol) (PEG) corona of polymer vesicles. The hydrophobic anchor, pyrene, is reversibly inserted into the PEG corona through the reversible protonation of its covalently linked pH-sensing group.

View Article and Find Full Text PDF