Publications by authors named "S G Riedel"

Article Synopsis
  • The pentafluoroorthotellurate group (-OTeF, teflate) is a potent electron-withdrawing substitute for fluoride, known for its stability and size, which helps avoid bridging ligand behavior.
  • This study employs advanced Quantum Chemical Topology methods to analyze the electronic structure and bonding of the teflate group, comparing its electronegativity with halogens and investigating the interactions in various XOTeF systems.
  • Findings reveal that while teflate exhibits strong electron-withdrawing abilities akin to fluorine, its bonding is predominantly ionic and shares similar electronegativity traits with other O-donor groups.
View Article and Find Full Text PDF

Herein hyperbranched polyethyleneimine (hPEI) cryogels are reported for the selective and reversible adsorption of elemental chlorine. The cryogels are prepared in an aqueous solution by crosslinking with glutaraldehyde at subzero temperatures. The final macroporous composites bearing ammonium chloride groups are obtained after freeze-drying.

View Article and Find Full Text PDF

The photocatalytic production of hydrogen using biopolymer-immobilized titanium dioxide (TiO) is an innovative and sustainable approach to renewable energy generation. TiO, a well-known photocatalyst, benefits from immobilization on biopolymers due to its environmental friendliness, abundance, and biodegradability. In another way, to boost the efficiency of TiO, its surface properties can be modified by incorporating co-catalysts like platinum (Pt) to improve charge separation.

View Article and Find Full Text PDF

Rechargeable magnesium batteries are promising for future energy storage. However, among other challenges, their practical application is hindered by low coulombic efficiencies of magnesium plating and stripping. Fundamental processes such as the formation, structure, and stability of passivation layers and the influence of different electrolyte components on them are still not fully understood.

View Article and Find Full Text PDF

A new Cl-Cl···O-N halogen-bonded paradigm has been demonstrated, using dichlorine as a halogen bond (XB) donor and -oxide as an XB acceptor. Their crystalline complexes were formed during the warm-up process from -196 °C to -80 °C for X-ray diffraction analysis. They exhibit high instability in the crystalline state, even at these low temperatures, leading to rapid decomposition and the formation of Cl⋯H-O-N hydrogen-bonded complexes.

View Article and Find Full Text PDF