Publications by authors named "S G Prem Kumar"

White matter hyperintensities (WMH) of presumed vascular origin are a magnetic resonance imaging (MRI)-based biomarker of cerebral small vessel disease (CSVD). WMH are associated with cognitive decline and increased risk of stroke and dementia, and are commonly observed in aging, vascular cognitive impairment, and neurodegenerative diseases. The reliable and rapid measurement of WMH in large-scale multisite clinical studies with heterogeneous patient populations remains challenging, where the diversity of imaging characteristics across studies adds additional complexity to this task.

View Article and Find Full Text PDF
Article Synopsis
  • Indian tick typhus is an infectious disease caused by gram-negative bacteria transmitted through ticks, lice, fleas, or mites, with an increase in reported cases in India over the past decade.
  • A study identified 18 unique metabolic pathways in the bacteria, revealing 163 proteins tied to survival, virulence, and resistance, which are crucial for understanding the pathogen's behavior.
  • Out of these proteins, 88 were identified as potential therapeutic targets, with 43 showing compatibility for drug development, hinting at new strategies for treating Indian tick typhus.
View Article and Find Full Text PDF

TLR4 stands at the forefront of innate immune responses, recognizing various pathogen- associated molecular patterns and endogenous ligands, thus serving as a pivotal mediator in the immune system's defense against infections and tissue damage. Beyond its canonical role in infection, emerging evidence highlights TLR4's involvement in numerous non-infectious human diseases, ranging from metabolic disorders to neurodegenerative conditions and cancer. Targeting TLR4 signaling pathways presents a promising therapeutic approach with broad applicability across these diverse pathological states.

View Article and Find Full Text PDF

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF