Microalgae photobioreactor (PBR) is a kind of efficient wastewater treatment system for nitrogen removal. However, there is still an urgent need for process optimization of PBR. Especially, the synergistic effect and optimization of light and flow state poses a challenge.
View Article and Find Full Text PDFMicroalgal technology holds great promise for both low C/N wastewater treatment and resource recovery simultaneously. Nevertheless, the advancement of microalgal technology is hindered by its reduced nitrogen removal efficiency in low C/N ratio wastewater. In this work, microalgae and waste oyster shells were combined to achieve a total inorganic nitrogen removal efficiency of 93.
View Article and Find Full Text PDFConventional microalgal-bacterial consortia have limited capacity to treat low-C/N wastewater due to carbon limitation and single nitrogen (N) removal mode. In this work, indigenous synergetic microalgal-bacterial consortia with high N removal performance and bidirectional interaction were successful in treating rare earth tailing wastewaters with low-C/N. Ammonia removal reached 0.
View Article and Find Full Text PDFRare earth element tailings (REEs) wastewater, which has the characteristics of high ammonia nitrogen (NH-N) and low COD. It can cause eutrophication and biotoxicity in water which is produced in high volumes, requiring treatment before final disposal. Microalgae-Bacteria symbiotic (MBS) system can be applied in REEs wastewater, but its low extent of nitrogen removal and instability limit its application.
View Article and Find Full Text PDFLow C/N municipal wastewater is difficult to be treated effectively via traditional biological methods, leading to concentrations of pollutants in effluent far exceeding increasingly strict standards. In this work, we propose a novel microalgae-bacteria tandem-type process to simultaneously remove ammonia nitrogen (NH-N) and phosphorus (P) from municipal wastewater. A 4.
View Article and Find Full Text PDF