Publications by authors named "S G Orel"

Background: International distribution of contaminated foods can be a source of infections in people and can contribute to the spread of antimicrobial-resistant bacteria across countries. We report an investigation led by the United States Centers for Disease Control and Prevention, the Food and Drug Administration (FDA), and state governmental officials into a multistate outbreak of salmonellosis linked to pig ear pet treats.

Methods: Pig ear treats and companion dogs were tested for by state officials and the FDA.

View Article and Find Full Text PDF

We present a method for fitting high-dimensional potential energy surfaces that is almost fully automated, can be applied to systems with various chemical compositions, and involves no particular choice of function form. We tested it on four systems: Ag20, Sn6Pb6, Si10, and Li8. The cost for energy evaluation is smaller than the cost of a density functional theory (DFT) energy evaluation by a factor of 1500 for Li8, and 60,000 for Ag20.

View Article and Find Full Text PDF

The global minima of the neutral binary Sn(m)Pb(n) atomic clusters, 7 ≤ m + n ≤ 12, of all the possible stoichiometric ratios have been found using tabu search in descriptor space and density functional theory. The effects of spin-orbit coupling on optimized geometries and energies are important. All of the binary clusters form substitution alloys.

View Article and Find Full Text PDF

Electronic spectra of 3d(n) transition ions in an octahedral ligand surrounding have been studied using the modified crystal field approach (MCFA), which includes a relativistic spin-orbital interaction. A new variable parameter, the effective nuclear charge Z(eff) of a metal ion that allows accounting implicitly the covalence degree of a metal-ligand bond, has been introduced. Energy diagrams similar to the Tanabe-Sugano ones have been calculated.

View Article and Find Full Text PDF

Spectroscopic investigations of a ZnAl(2)O(4) spinel doped with bivalent copper ions of 0.05% concentration have been carried out in the temperature range 4.2-290 K using a 3 cm(-1) range electron paramagnetic resonance (EPR) spectrometer having an operational frequency f = (9.

View Article and Find Full Text PDF