Despite a recent shift toward methylammonium (MA)-free lead-halide perovskites for perovskite solar cells, high-efficiency formamidinium lead iodide (FAPbI) devices still often require methylammonium chloride (MACl) as an additive, which evaporates away during the annealing process. In this article, it is shown that the residual MA, however, triggers thermal instability. To investigate the possibility of an optimal concentration of MA that may improve thermal stability, the intrinsic thermal stability of pure FA, FA-rich, MA-rich, and pure MA perovskite films (FAMAPbI, FAMA) is studied.
View Article and Find Full Text PDFQuantum cutting (QC) allows the conversion of high-energy photons into lower-energy photons, exhibiting great potential for infrared communications. Yb-doped perovskite nanocrystals can achieve an efficient QC process with extremely high photoluminescence quantum yield (PLQY) thanks to the favorable Yb incorporation in the perovskite structure. However, conventionally used oleic acid-oleylamine-based ligand pairs cause instability issues due to highly dynamic binding to surface states that have curbed their potential applications.
View Article and Find Full Text PDFThe ability to perceive color by the retina can be attributed to both its trichromatic photoreceptors and the antagonistic neural wiring known as the opponent process. While neuromorphic sensors have been shown to demonstrate memory and adaptation capabilities, color perception is still challenging due to the intrinsic lack of spectral selectivity in narrow bandgap semiconductors. Furthermore, research on emulating neural wiring is severely lacking.
View Article and Find Full Text PDFColloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr QDs. However, this also increases the fluorescence intermittency.
View Article and Find Full Text PDFThe power conversion efficiency (PCE) of the state-of-the-art large-area slot-die-coated perovskite solar cells (PSCs) is now over 19%, but issues with their stability persist owing to significant intrinsic point defects and a mass of surface imperfections introduced during the fabrication process. Herein, the utilization of a hydrophobic all-organic salt is reported to modify the top surface of large-area slot-die-coated methylammonium (MA)-free halide perovskite layers. Bearing two molecules, each of which is endowed with anchoring groups capable of exhibiting secondary interactions with the perovskite surfaces, the organic salt acts as a molecular lock by effectively binding to both anion and cation vacancies, substantially enhancing the materials' intrinsic stability against different stimuli.
View Article and Find Full Text PDF