Publications by authors named "S G Kozmin"

Near the C-terminus of histone H2A in the yeast Saccharomyces cerevisiae, there are 2 serines (S122 and S129) that are targets of phosphorylation. The phosphorylation of serine 129 in response to DNA damage is dependent on the Tel1 and Mec1 kinases. In Schizosaccharomyces pombe and S.

View Article and Find Full Text PDF

Chromosomes with two centromeres provide a unique opportunity to study chromosome breakage and DNA repair using completely endogenous cellular machinery. Using a conditional transcriptional promoter to control the second centromere, we are able to activate the dicentric chromosome and follow the appearance of DNA repair products. We find that the rate of appearance of DNA repair products resulting from homology-based mechanisms exceeds the expected rate based on their limited centromere homology (340 bp) and distance from one another (up to 46.

View Article and Find Full Text PDF

Although fusions between the centromeres of different human chromosomes have been observed cytologically in cancer cells, since the centromeres are long arrays of satellite sequences, the details of these fusions have been difficult to investigate. We developed methods of detecting recombination within the centromeres of the yeast Saccharomyces cerevisiae (intercentromere recombination). These events occur at similar rates (about 10-8/cell division) between two active or two inactive centromeres.

View Article and Find Full Text PDF

We characterized previously identified RNA viruses (L-A, L-BC, 20S, and 23S), L-A-dependent M satellites (M1, M2, M28, and Mlus), and M satellite-dependent killer phenotypes in the Saccharomyces cerevisiae 100-genomes genetic resource population. L-BC was present in all strains, albeit in 2 distinct levels, L-BChi and L-BClo; the L-BC level is associated with the L-BC genotype. L-BChi, L-A, 20S, 23S, M1, M2, and Mlus (M28 was absent) were in fewer strains than the similarly inherited 2µ plasmid.

View Article and Find Full Text PDF

RNA viruses are a widespread, biologically diverse group that includes the narnaviridiae, a family of unencapsidated RNA viruses containing a single ORF that encodes an RNA-dependent RNA polymerase. In the yeast Saccharomyces cerevisiae, the 20S and 23S RNA viruses are well-studied members of the narnaviridiae, which are present at low intracellular copy numbers, unless induced by stress or unfavorable growth conditions, and are not known to affect host fitness. In this study, we describe a new S.

View Article and Find Full Text PDF