Neurodegeneration is a seminal feature of many neurological disorders. Chronic traumatic encephalopathy (CTE) is caused by repetitive head impacts (RHI) and is characterized by sulcal tau pathology. However, quantitative assessments of regional neurodegeneration in CTE have not been described.
View Article and Find Full Text PDFThe role of nucleic acids in protein folding and aggregation is an area of continued research, with relevance to understanding both basic biological processes and disease. In this review, we provide an overview of the trajectory of research on both nucleic acids as chaperones and their roles in several protein misfolding diseases. We highlight key questions that remain on the biophysical and biochemical specifics of how nucleic acids have large effects on multiple proteins' folding and aggregation behavior and how this pertains to multiple protein misfolding diseases.
View Article and Find Full Text PDFBiosensors to measure protein stability in vivo are valuable tools for a variety of applications. Previous work has demonstrated that a tripartite design, whereby a protein of interest (POI) is inserted within a reporter, can link POI stability to reporter activity. Inteins are translated within other proteins and excised in a self-mediated protein splicing reaction.
View Article and Find Full Text PDFIntroduction: As the world population ages, new molecular targets in aging and Alzheimer's Disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. METHODS: In this study, we examined human hippocampal tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD.
View Article and Find Full Text PDFMaintaining a healthy protein folding environment is essential for cellular function. Recently, we found that nucleic acids, G-quadruplexes in particular, are potent chaperones for preventing protein aggregation. With the aid of structure-function and NMR analyses of two G-quadruplex forming sequences, PARP-I and LTR-III, we uncovered several contributing factors that affect G-quadruplexes in preventing protein aggregation.
View Article and Find Full Text PDF